
Week 9 - Wednesday

 What did we talk about last time?
 Symbol tables (maps) in the Java Collection Framework
 Graph definitions
 Started graph representations

 The book mentions four implementations:
 Adjacency matrix
 Array of edges
 Adjacency lists
 Adjacency sets

 We will talk about adjacency matrices and adjacency lists

 A simple way of keeping track of the edges in a graph is an
adjacency matrix

 An adjacency matrix is an n x n matrix where n is the number
of nodes

 The number in row i column j is the number of edges between
node i and node j

 Undirected graphs have symmetrical adjacency matrices
 The weakness of an adjacency matrix is that it uses Θ(n2)

space, even for sparse graphs

0

2

4

3

1

0 1 2 3 4

0 0 1 0 0 0

1 1 0 1 1 1

2 0 1 0 1 0

3 0 1 1 0 1

4 0 1 0 1 0

0 1 2 3 4

0 0 1 0 0 0

1 0 0 1 1 0

2 0 1 0 1 0

3 0 0 0 0 1

4 0 0 0 1 0

0

2

4

3

1

0 1 2 3 4

0 0 2 0 0 0

1 2 0 2 1 3

2 0 2 0 1 0

3 0 1 1 1 1

4 0 3 0 1 0

0

2

4

3

1

0

2

4

3

1

0 1 2 3 4

0 0 5 0 0 0

1 5 0 2 6 9

2 0 2 0 3 0

3 0 6 3 0 4

4 0 9 0 4 0

Alternatively, the numbers in the matrix can represent the weights
on edges.

5
2

3

69

4

 An adjacency matrix wastes a lot of space if the graph is not
very dense

 An alternative is an adjacency list
 The form of an adjacency list is an array of length n where the

ith element is a pointer to a linked list (or dynamically allocated
array) of the nodes adjacent to node i

 This is the approach the book focuses on, since most graphs
are not dense

0

2

4

3

1
0

1

2

3

4

1

0

1

1

1

2

3

2

3

3

4

4

0

2

4

3

1
0

1

2

3

4

1

2

1

4

3

3

3

0

2

4

3

1

It's a trick!

Some other steps must be
taken to represent a
multigraph with an
adjacency list.

Each node in the linked list
must contain additional
information.

0

2

4

3

1

Again, we need extra information in the lists.

5
2

3

69

4

0

1

2

3

4

1 5

0 5 2 2 3 6 4 9

1 2 3 3

1 6 2 3 4 4

1 9 3 4

 Similar to a preorder traversal in a tree
 We want to visit every node once, going down as far as

possible before backing up
 Issues:
 No guarantee about ordering like a BST
 Loops are a problem, how do we keep from repeating nodes?

0

2

4

3

1

0

2

4

3

1

0

2

4

3

1

0

2

4

3

1

0

2

4

3

1

0

2

4

3

1

We might start at
an arbitrary
location.

What's a DFS look
like that starts at
node 4?

4, 1, 0, 2, 3

 We use pseudocode a lot when describing graph operations, since
the details depend on implementation choice

 Nodes all need some extra information, call it number
 Startup

1. Set the number of all nodes to 0
2. Pick an arbitrary node u and run DFS(u, 1)

 DFS(node v, int i)
1. Set number(v) = i++
2. Do whatever other processing for v is necessary
3. For each node u adjacent to v

If number(u) is 0
DFS(u, i)

 What if we wanted to find paths from node s to other nodes?
 We run DFS starting at s with an extra array of length |V|

called edges
 When we move from node u to node v, we set edges[v] = u
 Then, to find a path from s to t, we backtrack by looking at

edges[t] and working backwards until we get to s
 This approach will find a path if there is one, but it may not be

the shortest path

E

B

A

G
H

D

J

C

IF

Node
Edge
From

A B

B

C D

D A

E C

F G

G E

H G

I

J

To find paths from B
to other nodes, we
first do a DFS from BE

B

A

G
H

D

J

C

IF

Working backwards, a path from F to B is: F G E C D A B
Thus, a path from B to F is: B A D C E G F

 Similar to a level order traversal in a tree
 We want to visit every node once, visiting all the neighbors of

one node before moving on to their neighbors
 Similar issues to a DFS

0

2

4

3

1

0

2

4

3

1

0

2

4

3

1

0

2

4

3

1

0

2

4

3

1

0

2

4

3

1

We might start at
an arbitrary
location.

What's a BFS look
like that starts at
node 4?

4, 1, 3, 0, 2

 More pseudocode!
 Nodes all need some extra information, call it number
 BFS(node v)

1. Set the number of all nodes to 0
2. Create queue q
3. Set i = 1
4. number(v) = i++
5. q.enqueue(v)
6. While q is not empty

a. v = q.dequeue()
b. Do whatever other processing for v is necessary
c. For each node u adjacent to v

If number(u) is 0
Set number(u) = i++
q.enqueue(u)

 Let V be the set of vertices and E be the set of edges
 Thus, |V| is the number of vertices and |E| is the number of edges
 If you are using adjacency lists then:
 DFS is:
▪ O(|V| + |E|)

 BFS is:
▪ O(|V| + |E|)

 If you are using an adjacency matrix then:
 DFS is:
▪ O(|V|2)

 BFS is:
▪ O(|V|2)

 Cycle detection
 Topological sort
 Connectivity
 Minimum spanning trees
 Shortest paths

 Keep working on Project 3
 Finish Assignment 4
 Due Friday!

 Read 4.3 and 4.4

	COMP 2100
	Last time
	Questions?
	Project 3
	Assignment 4
	Graph Representations
	Implementing the graph ADT
	Adjacency matrix
	Adjacency matrix example
	Directed graph example
	Multigraph example
	Weighted graph example
	Adjacency lists
	Adjacency list example
	Directed graph adjacency list
	Multigraph example
	Weighted graph example
	Depth First Search
	Depth first search (DFS)
	DFS example
	DFS pseudocode
	Generating paths
	Path example
	Breadth First Search
	Breadth first search (BFS)
	BFS example
	BFS pseudocode
	Running time
	Quiz
	Upcoming
	Next time…
	Reminders

