
Week 9 - Wednesday



 What did we talk about last time?
 Symbol tables (maps) in the Java Collection Framework
 Graph definitions
 Started graph representations











 The book mentions four implementations:
 Adjacency matrix
 Array of edges
 Adjacency lists
 Adjacency sets

 We will talk about adjacency matrices and adjacency lists



 A simple way of keeping track of the edges in a graph is an 
adjacency matrix

 An adjacency matrix is an n x n matrix where n is the number 
of nodes

 The number in row i column j is the number of edges between 
node i and node j

 Undirected graphs have symmetrical adjacency matrices
 The weakness of an adjacency matrix is that it uses Θ(n2) 

space, even for sparse graphs



0

2

4

3

1

0 1 2 3 4

0 0 1 0 0 0

1 1 0 1 1 1

2 0 1 0 1 0

3 0 1 1 0 1

4 0 1 0 1 0



0 1 2 3 4

0 0 1 0 0 0

1 0 0 1 1 0

2 0 1 0 1 0

3 0 0 0 0 1

4 0 0 0 1 0

0

2

4

3

1



0 1 2 3 4

0 0 2 0 0 0

1 2 0 2 1 3

2 0 2 0 1 0

3 0 1 1 1 1

4 0 3 0 1 0

0

2

4

3

1



0

2

4

3

1

0 1 2 3 4

0 0 5 0 0 0

1 5 0 2 6 9

2 0 2 0 3 0

3 0 6 3 0 4

4 0 9 0 4 0

Alternatively, the numbers in the matrix can represent the weights 
on edges.

5
2

3

69

4



 An adjacency matrix wastes a lot of space if the graph is not 
very dense

 An alternative is an adjacency list
 The form of an adjacency list is an array of length n where the 

ith element is a pointer to a linked list (or dynamically allocated 
array) of the nodes adjacent to node i

 This is the approach the book focuses on, since most graphs 
are not dense
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It's a trick!

Some other steps must be 
taken to represent a 
multigraph with an 
adjacency list. 

Each node in the linked list 
must contain additional 
information.
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Again, we need extra information in the lists.
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 Similar to a preorder traversal in a tree
 We want to visit every node once, going down as far as 

possible before backing up
 Issues:
 No guarantee about ordering like a BST
 Loops are a problem, how do we keep from repeating nodes?
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We might start at 
an arbitrary 
location.

What's a DFS look 
like that starts at 
node 4?

4, 1, 0, 2, 3



 We use pseudocode a lot when describing graph operations, since 
the details depend on implementation choice

 Nodes all need some extra information, call it number
 Startup

1. Set the number of all nodes to 0
2. Pick an arbitrary node u and run DFS( u, 1 )

 DFS( node v, int i )
1. Set number(v) = i++
2. Do whatever other processing for v is necessary
3. For each node u adjacent to v

If number(u) is 0
DFS( u, i )



 What if we wanted to find paths from node s to other nodes?
 We run DFS starting at s with an extra array of length |V| 

called edges
 When we move from node u to node v, we set edges[v] = u
 Then, to find a path from s to t, we backtrack by looking at 

edges[t] and working backwards until we get to s
 This approach will find a path if there is one, but it may not be 

the shortest path
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Working backwards, a path from F to B is: F G E C D A B
Thus, a path from B to F is: B A D C E G F





 Similar to a level order traversal in a tree
 We want to visit every node once, visiting all the neighbors of 

one node before moving on to their neighbors
 Similar issues to a DFS
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like that starts at 
node 4?
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 More pseudocode!
 Nodes all need some extra information, call it number
 BFS(node v) 

1. Set the number of all nodes to 0
2. Create queue q
3. Set i = 1
4. number(v) = i++
5. q.enqueue( v )
6. While q is not empty

a. v = q.dequeue()
b. Do whatever other processing for v is necessary
c. For each node u adjacent to v

If number(u) is 0
Set number(u) = i++
q.enqueue(u)



 Let V be the set of vertices and E be the set of edges
 Thus, |V| is the number of vertices and |E| is the number of edges
 If you are using adjacency lists then:
 DFS is:
▪ O(|V| + |E|)

 BFS is:
▪ O(|V| + |E|)

 If you are using an adjacency matrix then:
 DFS is:
▪ O(|V|2)

 BFS is:
▪ O(|V|2)







 Cycle detection
 Topological sort
 Connectivity
 Minimum spanning trees
 Shortest paths



 Keep working on Project 3
 Finish Assignment 4
 Due Friday!

 Read 4.3 and 4.4
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